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PARTICLE PHYSICS: THEMES AND CHALLENGES

Chris Quigg
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P.O. Box 500, Batavia, Illinois 60510 USA

1 Introduction

We gather in Ho Chi Minh City with high expectations for the future of particle physics and high
hopes for the future of science in Vietnam. We are in the midst of a revolution in our perceptions of
nature, when the achievements of our science have brought our insights closer to everyday life than ever
before. I will devote this lecture to seven themes that express the essence of our understanding|and
our possibilities.

2 Elementarity

One of the pillars of our understanding is the identi�cation of a set of fundamental constituents,
the leptons  
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;

which have no internal structure, no size, no form factors, and no excited states|so far as we know.
The quarks are color triplets, so experience the strong interactions, whereas the leptons, color singlets,
do not.

The charged leptons and the quarks are Dirac particles with gyromagnetic ratio g = 2 (+ the
amount induced by interactions). The size of the fermions is smaller than the current limit of experi-
mental resolution characterized by a radius R�< 10�17 cm.1) We don't yet know whether the neutrinos
are massive or not. If neutrinos do have mass, they may be either Dirac or Majorana particles.2)

All the experimental evidence leads us to conclude that quarks and leptons are the fundamental
(constituent) degrees of freedom at current energies. We regard them as elementary.

What if they were not? What if quarks and leptons were composite?
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Approaching the compositeness scale from low energies, we would encounter new contact interac-
tions that correspond to the exchange or rearrangement of constituents.3) In quark-quark scattering,
the conventional gluon exchange would be supplemented by a contact term of geometrical size and
unknown Lorentz structure. In �pp collisions, this new contribution would lead to an excess (over QCD)
of hadron jets at large values of the transverse energy, where �qq ! �qq is the dominant elementary
reaction. In general, the angular distribution of the jets will di�er from the standard QCD shape. If
quarks and leptons have common constituents, a similar excess will be seen in dilepton production,
from the elementary process �qq ! `+`�. At still higher energies, we expect to see the e�ects of excited
q� and `� states.4) Finally, at energies well above the compositeness scale, quarks and leptons would
begin to manifest form factors.

No experimental evidence except history suggests that quarks and leptons are composite. How-
ever, compositeness might explain the fermion mass spectrum, the existence of generations, and the
relationship of quarks and leptons. No composite model has yet achieved these breakthroughs,5) so
the search for compositeness is a purely experimental exercise. The discovery of compositeness would
alter our conception of matter in a fundamental way.

3 Symmetry

The other essential ingredient in the standard model is the notion that continuous local symmetries|
gauge symmetries|determine the character of the fundamental interactions.

The simplest, and classic, example is the derivation of quantum electrodynamics from local phase
invariance. The quantum mechanics of a free particle is invariant under global changes of phase of the
wave function,

 (x)! ei� (x): (3.1)

This is the symmetry associated with charge conservation. Requiring a theory invariant under local
changes of phase,

 (x)! ei�(x) (x); (3.2)

demands the introduction of a massless vector �eld, identi�ed as the photon, and leads to a full theory
of electrodynamics, QED.6)

The same general strategy can be applied to any continuous symmetry. That insight links the
problem of building theories of the fundamental interactions to the search for the right symmetries to
gauge. Let us review the electroweak theory as an example.

The crucial experimental clues for the construction of a gauge theory of the weak and electromag-
netic interactions are the family pattern embodied in the left-handed weak-isospin doublets of leptons
and quarks and the universal strength of the charged-current weak interactions. It is straightforward
to construct the theory, which I will write down for one generation of leptons, idealizing the neutrinos
as massless.

To incorporate SU(2)L weak-isospin symmetry, we de�ne a left-handed doublet,

L �
 
�L
eL

!
=

 
1
2(1� 
5)�
1
2(1� 
5)e

!
; (3.3)

and a right-handed singlet,
R � eR = 1

2(1 + 
5)e: (3.4)

To include electromagnetism, we de�ne the weak hypercharge through Q = I3+
1
2Y , so that YL = �1,

YR = �2. The gauge group SU(2)L 
 U(1)Y allows two coupling constants, g for the SU(2)L gauge
bosons b1�; b

2
�; b

3
�, and

1
2g

0 for the U(1) gauge boson A�. We may write the Lagrangian as

L = Lgauge+ Lleptons; (3.5)
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where Lgauge = �1
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and the matter term is

Lleptons = �Ri
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�
L: (3.6)

Explicit mass terms for the gauge bosons or fermions are inconsistent with the gauge symmetry.
Accordingly, this theory has a massless neutrino, a massless electron, and four massless electroweak
gauge bosons. Nature has a massive electron, a massless neutrino, three massive gauge bosons, and
but one massless electroweak gauge boson, the photon. The minimal solution to this mismatch is to
hide the gauge symmetry by means of the Higgs mechanism. We introduce a complex weak-isospin
doublet of scalar �elds,

� =

 
�+

�0

!
; (3.7)

with weak hypercharge Y� = +1. Add to the Lagrangian a piece

Lscalar = (D��)y(D��)� V (�y�); (3.8)

where the gauge-covariant derivative is D� = @� +
ig0

2
A�Y +

ig

2
~� � ~b�, and the Higgs potential is

V (�y�) = �2(�y�) + j�j(�y�)2. We are also free to add the interactions of the scalars with the
fermions,

LYukawa = �Ge

h
�R(�yL) + (�L�)R

i
: (3.9)

If �2 < 0, the vacuum state corresponds to a nonzero value of the scalar �eld, which we choose to
be

h�i0 =
 

0

v=
p
2

!
=

 
0

(GF

p
8)�1=2

!
: (3.10)

(The last identi�cation ensures that the theory reproduces the low-energy charged-current phenom-
enology.) The nonzero value of h�i0 hides (or breaks) the SU(2)L and U(1)Y symmetries, but
preserves a residual invariance under U(1)EM. The spectrum of the broken theory consists of a
massless photon A� = A� cos �W + b3� sin �W , with coupling gg0=

p
g2 + g02 � e; charged vector

bosons W�
� = (b1� � ib2�)=

p
2, with M2

W = ��=GF

p
2 sin2 �W ; a neutral intermediate boson Z� =

b3� cos �W � A� sin �W , with MZ = MW=cos �W ; a neutral Higgs scalar, with M2
H = �2�2 > 0; and an

electron with mass me = Gev=
p
2. The predicted masses for the W� and Z0 are expressed in terms

of the weak mixing parameter sin2 �W , which is measured in neutral-current reactions. It is both a
triumph and a frustration of the electroweak theory that spontaneous symmetry breaking plus Yukawa
couplings generates fermion masses, for the Yukawa couplings are not calculable within the theory.

4 Consistency

The leptonic and hadronic charged weak currents are identical in form, characterized by the left-
handed doublets  

�e
e

!
L

;

 
u
d�

!
L

; (4.1)

etc. Renormalizability requires the absence of anomalies|quantum violations of classical symmetries
or conservation laws. For the electroweak theory, the condition for anomaly freedom can be expressed
in the requirement

�Q = QR � QL =
X

RH doublets

Q�
X

LH doublets

Q = 0: (4.2)

In an electroweak theory based on the lepton doublet (�e e)L, �Q
(leptons) = �QL = +1 6= 0. To

cancel the lepton anomaly, we could add right-handed fermions with appropriate charges, but no
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right-handed charged-current interactions are known. More to the point, we can add a color triplet
of left-handed quark doublets (u d�)L, for which �Q(quarks) = �3(23 � 1

3) = �1, so that �Q =

�Q(leptons)+�Q(quarks) = 0.

It is remarkable that a consistent theory of weak and electromagnetic interactions requires quarks
as well as leptons. This suggests a deep connection between quarks and leptons that I take as an
important clue toward a more complete theory.

5 Unity

Making connections is the essence of scienti�c progress. For monumental examples, think of the
amalgamation of electricity and magnetism and light; of the recognition that heat is atoms in motion,
which brought together thermodynamics and Newtonian mechanics; and of the realization that the
chemical properties of substances are determined by the atomic and molecular structure of matter.
Each of these uni�cations brought new understanding and illuminated phenomena beyond those that
served as motivation.

What progress might we achieve by unifying the quarks and leptons, or the strong, weak, and
electromagnetic interactions described by the SU(3)c 
 SU(2)L 
 U(1)Y gauge theories, or both?
The link between quarks and leptons implied by anomaly cancellation is reinforced by the following
set of questions: Can we understand why (i) electric charge is quantized? (ii) Qp + Qe = 0? (iii)
Q� � Qe = Qu � Qd? (iv) Qd = Qe=3? (v) Q� +Qe + 3Qu + 3Qd = 0?

What observations motivate a uni�ed theory of the fundamental interactions? Beyond the similar-
ities and links between quarks and leptons, we recognize that the SU(2)L 
 U(1)Y elctroweak theory
achieves only a partial uni�cation of the weak and electromagnetic interactions, as evidenced by the
fact that sin2 �W is a free parameter of the theory. Taken together, quantum chromodynamics and
the electroweak theory have three distinct coupling parameters, (�s; �EM; sin

2 �W ) or, equivalently,
(�3; �2; �1). Might we reduce the number of independent couplings to two or one? As we shall review
presently, the evolution of the gauge couplings suggests that coupling-constant uni�cation might be
possible.

The minimal example of a theory that uni�es the quarks and leptons and the fundamental in-
teractions is based on the gauge group SU(5).7) The gauge bosons of SU(5) lie in the adjoint 24
representation. Decomposing these particles according to their (SU(3)c; SU(2)L)Y quantum numbers,
we recognize

(8; 1)0 : gluons;
(1; 3)0 : W+;W�;W3;
(1; 1)0 : A;

(5.1)

the twelve gauge bosons of (unbroken) SU(3)c 
 SU(2)L 
 U(1)Y , plus twelve new force particles
whose existence is implied by the uni�cation:

(3; 2)�5=3 : X�4=3; Y �1=3;

(3�; 2)5=3 : X4=3; Y 1=3:
(5.2)

These additional interactions mediate baryon- and lepton-number-violating processes. The fundamen-
tal fermions �t in the 5� and 10 representations of SU(5), with �e; eL; dcL 2 5� and ecL; uL; dL; ucL 2 10,
where I have used charge-conjugate �elds to represent the right-handed degrees of freedom.

It is a straightforward matter to compute the evolution of the SU(3)c 
 SU(2)L 
 U(1)Y gauge
couplings.8) Writing �i = g2i =4�, we have to leading logarithmic approximation

1=�3(Q
2) = 1=�3(�

2) + b3 ln(Q
2=�2); (5.3)

where 4�b3 = 11� 2nf=3 = 11� 4ng=3, and nf (ng) is the number of active 
avors (generations) with
mass <

p
Q2;

1=�2(Q
2) = 1=�2(�

2) + b2 ln(Q
2=�2); (5.4)
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Figure 1: Evolution of running coupling constants in leading logarithmic approximation in the three-
generation SU(5) model.

where 4�b2 = (22� 4ng � 1
2)=3;

(5=3)(1=�1(Q
2)) = 1=�Y (Q

2) = 1=�Y (�
2) + bY ln(Q2=�2); (5.5)

where 4�bY = �20ng=9. We equate �3; �2; �1 at the uni�cation scale MU . To estimate the uni�cation
scale, we take

1=�(M2
Z) = 1=�Y (M

2
Z) + 1=�2(M

2
Z) = 129:08 (5.6)

and
�3(M

2
Z) = 0:116; (5.7)

whereupon
MU � 1015 GeV: (5.8)

The characteristic evolution of the coupling constants is shown in Figure 1. Reality seems a little
di�erent.9)

Of special interest is the evolution of the weak mixing parameter

xW = sin2 �W = �=�2: (5.9)

The evolution equations for the gauge couplings yield

xW (Q2) =
3

8
� �(Q2)

(3bY � 5b2)

8
ln(Q2=M2

U) (5.10)

=
3

8
+
55�(Q2)

48�
ln(Q2=M2

U); (5.11)

which is sketched in Figure 2. The SU(5) prediction at the weak scale is

xW (M2
Z)
���
SU(5)

� 0:21; (5.12)

which is both tantalizingly close to, and frustratingly far from, the LEP{SLD average value10)

xW (M2
Z)
���
LEP+SLD

= 0:23143� 0:00028: (5.13)

5



hep-ph/9511438 FERMILAB{CONF{95/353{T

0.20

0.25

0.30

0.35

0.40

101 104 107 1010 1013 1016

x W
 =

 s
in

2 θ W

Q [GeV]

Figure 2: Evolution of the weak mixing parameter in the three-generation SU(5) model.

Let us summarize the standing of the SU(5) example of a uni�ed theory. SU(5) contains the
standard-model gauge group SU(3)c 
 SU(2)L 
 U(1)Y in a simple group, and thus reduces the
number of independent couplings from three to one. By construction, the theory gives a correct
description of the charged-current weak interactions. So far as the neutral-current interactions are
concerned, it predicts a value of the weak mixing parameter that is close to, but not identical with,
the observed value. SU(5) naturally explains the quantization of electric charge. Since the electric-
charge operator Q is a generator of SU(5), the sum of electric charges over any representation must
be zero. This means in particular that Q(dc) = (�1=3)Q(e). Proton decay is possible, through the
action of the color-triplet gauge bosons X and Y .11) And of course, aspirations remain, even beyond
a uni�ed theory of the strong, weak, and electromagnetic interactions, for gravitation is omitted from
the theory.

6 Identity

What makes a bottom quark a bottom quark, or an electron an electron? One of the great
unsolved problems of the standard model is how to calculate fermion masses and mixing angles. In
the electroweak theory, the Higgs mechanism produces fermion masses, as a result of spontaneous
symmetry breaking. Recall that for a single generation of leptons, the Yukawa interaction is

LYukawa = �Ge

h
�R(�yL) + (�L�)R

i
; (6.1)

where the left-handed lepton doublet is

L =

 
�e
e

!
L

(6.2)

and R = eR is the right-handed electron. The interaction (6.1) is the most general Lorentz scalar
invariant under local SU(3)c 
 U(1)Y transformations. The electroweak theory o�ers no guidance
about the value of the Yukawa coupling. For the electron, Ge � 3 � 10�6, while the analogous
coupling for the top quark is Gt � 1.

For three generations of quarks and leptons, we can generalize (6.1) to

LYukawa = �uiRUij(��
y
uQj) + �diRDij(�

y
dQj) + �eiREij(�

y
dLj); (6.3)

where

Qj =

 
uj
dj

!
L

Lj =

 
�j
`j

!
L

; (6.4)
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and Uij ; Dij; and Eij are complex 3� 3 matrices. In the electroweak theory, �u = �d = �, with h�i0
given by (3.10), whereas in the minimal supersymmetric generalization, �u and �d are distinct. The
ratio of their vacuum expectation values is parametrized as tan� = vu=vd.

Uni�ed theories imply relations among fermion masses. In the example of SU(5), spontaneous
symmetry breaking occurs in two steps. First, an adjoint 24 of scalars breaks

SU(5)! SU(3)c 
 SU(2)L 
 U(1)Y ; (6.5)

and gives very large masses to the X�4=3 and Y �1=3 gauge bosons. But because the 24 does not
occur in the �LR products 5� 
 10 = 5 � 45 and 10 
 10 = 5� � 45� � 50�, no fermion masses are
generated at this stage. Electroweak symmetry is broken by the SU(5) generalization of the usual
Higgs mechanism, a 5 of scalars that contains the standard-model Higgs doublet:

SU(3)c 
 SU(2)L 
 U(1)Y ! SU(3)c 
 U(1)EM: (6.6)

This pattern of symmetry breaking leads to the relations

me = md; m� = ms; m� = mb; (6.7)

at the uni�cation scale. The masses of the charge-2/3 quarks are separate parameters mu; mc; mt.

Like the values of coupling constants, the values of particle masses depend on the scale on which
they are observed. In leading logarithmic approximation, the running masses of the up-like quarks
evolve as

lnmu;c;t(�) � lnmu;c;t(MU) +
12

33� 2nf
ln

�
�3(�)

�U

�

+
27

88� 8nf
ln

�
�2(�)

�U

�
� 3

10nf
ln

�
�1(�)

�U

�
; (6.8)

the down-like quark masses run as

lnmd;s;b(�) � lnmd;s;b(MU) +
12

33� 2nf
ln

�
�3(�)

�U

�

+
27

88� 8nf
ln

�
�2(�)

�U

�
+

3

20nf
ln

�
�1(�)

�U

�
; (6.9)

and the masses of the charged leptons evolve as

lnme;�;� (�) � lnme;�;� (MU)

+
27

88� 8nf
ln

�
�2(�)

�U

�
� 27

20nf
ln

�
�1(�)

�U

�
: (6.10)

Accordingly, the masses of the b-quark and the � -lepton evolve to di�erent values at low energies:

ln

�
mb(�)

m� (�)

�
� 12

33� 2nf
ln

�
�3(�)

�U

�
+

3

2nf
ln

�
�1(�)

�U

�
: (6.11)

Choosing nf = 6, 1=�U = 40, 1=�3(�) = 5, and 1=�1 = 65, we compute (which is to say, predict)

mb = 2:91m� = 5:16 GeV=c2; (6.12)

in good agreement with the facts. To make this simple estimate, I have neglected the change in
evolution at top threshold. Higgs-boson contributions, omitted here, are important for the evolution
of heavy-fermion masses. The top Yukawa coupling plays a crucial role in supersymmetric models.
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Starting from the equalities ms(MU) = m�(MU ) and md(MU) = me(MU), equations (6.9) and
(6.10) lead to the prediction that at � � 1 GeV,

ms

md
=
m�

me
: (6.13)

This is less successful; empirically, the left-hand-side is about 20, and the right-hand-side about 200.
A more elaborate scheme for breaking the electroweak symmetry|say, adding a 45 of scalars|can
give rise to a di�erent simple pattern of masses at the uni�cation scale. The simple pattern

ms(MU) =
1
3m�(MU ); md(MU) = 3me(MU) (6.14)

leads to
ms � 4

3m�; md � 12me; (6.15)

at � = 1 GeV.

The important point in these exercises is not that SU(5) gives us an understanding of the pattern
of fermion masses, but the more general lesson that a simple pattern at the uni�cation scale can
manifest itself in a complicated (irrational!) pattern at low energies. This insight has spawned a
new strategy for making sense of the pattern of fermion masses|and a new industry for theorists.12)

Begin with a promising uni�ed theory, like supersymmetric SU(5), which has advantages over ordinary
SU(5) for sin2 �W , coupling constant uni�cation, and the proton lifetime, or supersymmetric SO(10),
which can accommodate massive neutrinos. Then �nd \textures," simple patterns of Yukawamatrices
that lead to successful predictions for masses and mixing angles. Interpret these in terms of patterns
of electroweak symmetry breaking. Finally, seek a derivation of|or at least a motivating principle
for|the winning entry. The proof that this program has predictive power is that some schemes fail
for mt or jVcbj.

7 Opportunity

As successful as the electroweak theory is in describing experimental observations,13) we do not
need hints from experiment to know that the theory is incomplete.14) We have only to look at the many
parameters of the SU(3)c
 SU(2)L
 U(1)Y gauge theories of the strong, weak, and electromagnetic
interactions to see opportunities for a more predictive theory. The 6 quark masses, 3 charged-lepton
masses, 4 quark-mixing parameters, 3 coupling constants, 2 parameters of the Higgs potential, and
1 strong (CP) phase make 19 parameters whose values are not explained by the standard model.
Seventeen of these numbers lie in the domain of the electroweak theory. Next, we can inquire into the
self-consistency and naturalness of the electroweak theory. The hierarchy, naturalness, and triviality
problems indicate that the electroweak theory is not complete.

As an illustration of these shortcomings, let us ask why the electroweak scale is small. Note that
we do have some understanding, from the evolution of coupling constants down from the uni�cation
scale, of why the strong interaction becomes strong at a scale of about 1 GeV.

The SU(2)L
 U(1)Y electroweak theory does not explain how the scale of electroweak symmetry
breaking is maintained in the presence of quantum corrections. The problem of the scalar sector can
be summarized neatly as follows.15) The Higgs potential is

V (�y�) = �2(�y�) + j�j (�y�)2 : (7.1)

With �2 chosen to be less than zero, the electroweak symmetry is spontaneously broken down to the
U(1) of electromagnetism, as the scalar �eld acquires a vacuum expectation value that is �xed by the
low-energy phenomenology,

h�i0 =
 

0p��2=2j�j
!
�
 

0

v=
p
2

!
= (GF

p
8)�1=2 � 175 GeV : (7.2)
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Three of the scalar degrees of freedom become the longitudinal components of the intermediate vector
bosons W+;W�; and Z0. The fourth emerges as a massive scalar particle, the Higgs boson, with
mass given by

M2
H = 2j�jv2: (7.3)

Beyond the classical approximation, scalar mass parameters receive quantum corrections from
loops that contain particles of spins J = 1; 1=2, and 0:

++

J=1 J=1/2 J=0

m
2
(p

2
) = m 0

2
+ (7.4)

The loop integrals are potentially divergent. Symbolically, we may summarize the content of (7.4) as

m2(p2) = m2(�2) + Cg2
Z �2

p2
dk2 + � � � ; (7.5)

where � de�nes a reference scale at which the value of m2 is known, g is the coupling constant
of the theory, and the coe�cient C is calculable in any particular theory. Instead of dealing with
the relationship between observables and parameters of the Lagrangian, we choose to describe the
variation of an observable with the momentum scale. In order for the mass shifts induced by radiative
corrections to remain under control (i.e., not to greatly exceed the value measured on the laboratory
scale), either � must be small, so the range of integration is not enormous, or new physics must
intervene to cut o� the integral.

If the fundamental interactions are described by an SU(3)c 
 SU(2)L 
 U(1)Y gauge symmetry,
i.e., by quantum chromodynamics and the electroweak theory, then the natural reference scale is the
Planck mass,

� �MPlanck � 1019 GeV : (7.6)

In a uni�ed theory of the strong, weak, and electromagnetic interactions, the natural scale is the
uni�cation scale,

� �MU � 1015-1016 GeV : (7.7)

Both estimates are very large compared to the scale of electroweak symmetry breaking. We are
therefore assured that new physics must intervene at an energy of approximately 1 TeV, in order that
the shifts in m not be much larger than v=

p
2.

Only a few distinct scenarios for controlling the contribution of the integral in (7.5) can be envis-
aged. The supersymmetric solution16) is especially elegant. Exploiting the fact that fermion loops
contribute with an overall minus sign (because of Fermi statistics), supersymmetry balances the con-
tributions of fermion and boson loops. In the limit of unbroken supersymmetry, in which the masses
of bosons are degenerate with those of their fermion counterparts, the cancellation is exact:

X
i= fermions

+bosons

Ci

Z
dk2 = 0 : (7.8)

If the supersymmetry is broken (as it must be in our world), the contribution of the integrals may
still be acceptably small if the fermion-boson mass splittings �M are not too large. The condition
that g2�M2 be \small enough" leads to the requirement that superpartner masses be less than about
1 TeV=c2.

A second solution to the problem of the enormous range of integration in (7.5) is o�ered by
theories of dynamical symmetry breaking such as technicolor.17) In technicolor models, the Higgs
boson is composite, and new physics arises on the scale of its binding, �TC ' O(1 TeV). Thus the
e�ective range of integration is cut o�, and mass shifts are under control.

9
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A third possibility is that the gauge sector becomes strongly interacting.18) This would give rise
to WW resonances, multiple production of gauge bosons, and other new phenomena at energies of
1 TeV or so. It is likely that a scalar bound state|a quasi-Higgs boson|would emerge with a mass
less than about 1 TeV=c2.

We cannot avoid the conclusion that some new physics must occur on the 1-TeV scale. This is
the principal sharp motivation for multi-TeV hadron colliders|for the LHC. We seek to complete
our understanding of electroweak symmetry breaking. A thorough investigation of the 1-TeV scale
promises to solve the problem of gauge-boson masses and give us insight, if not a complete solution, into
the origin of fermion masses. The large step in energy and sensitivity will also test the underpinnings
of the standard model by allowing us to search for new forces, for composite quarks and leptons, and
for new forms of matter.

8 Relevance

Physics is possible because we can analyze phenomena on one energy scale without understanding
all energy scales. In other words, we need not understand everything before we can begin to answer
something. In quantum �eld theory, it is frequently possible to identify the relevant degrees of freedom
on some energy scale, and to formulate e�ective �eld theories that make sense in a restricted domain.
Decoupling theorems codify the statement that degrees of freedom that come into play on a high scale
do not matter on a low scale.

But the fact that we can formulate a consistent description of low-energy phenomena without
understanding everything that happens all the way up to very high energies must not blind us to the
additional insights that information from higher energies, or shorter distances, can bring. Early in this
century, our scienti�c ancestors learned that to explain why a table is solid, or why a metal gleams,
we must explore the atomic and molecular structure of matter at a billionth of human dimensions,
where the laws of quantum mechanics take over from the customs of daily life. The recent discovery
of the top quark in experiments at a billionth of the atomic scale inspires us to reconsider how the
microworld in
uences our surroundings.

It is popular to say that top quarks were created in great numbers in the early moments after the
big bang some �fteen billion years ago, disintegrated in a fraction of a second, and vanished from the
scene until my colleagues learned to create them in the Tevatron at Fermilab. That would be reason
enough to be interested in top: to learn how it helped sow the seeds for the primordial universe that
has evolved into the world of diversity and change we live in. But it is not the whole story; it invests
the top quark with a remoteness that hides its real importance|and understates the immediacy of
particle physics. The real wonder is that here and now, every minute of every day, top a�ects the world
around us. I would like to close by giving one striking example of top's in
uence on the everyday.19)

Consider a uni�ed theory of the strong, weak, and electromagnetic interactions|three-generation
SU(5), say|in which all coupling constants take on a common value, �U , at some high energy,MU . If
we adopt the point of view that the value of the coupling constant is �xed at the uni�cation scale, then
the value of the QCD scale parameter �QCD depends on the mass of the top quark. If we evolve the

SU(3)c coupling, �s, down from the uni�cation scale in the spirit of Georgi, Quinn, and Weinberg,8)

then the leading-logarithmic behavior is given by

1=�s(Q) = 1=�U +
21

6�
ln(Q=MU) ; (8.1)

for MU > Q > mt. In the interval between mt and mb, the slope (33 � 2nf)=6� (where nf is the
number of active quark 
avors) steepens to 23=6�, and then increases by another 2=6� at every quark
threshold. At the boundary Q = Qn between e�ective �eld theories with n � 1 and n active 
avors,

the coupling constants �
(n�1)
s (Qn) and �

(n)
s (Qn) must match. This behavior is shown by the solid line

in Figure 3.
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Figure 3: Two evolutions of the strong coupling constant.

To discover the dependence of �QCD upon the top-quark mass, we use the one-loop evolution
equation to calculate �s(mt) starting from low energies and from the uni�cation scale, and match:

1=�U +
21

6�
ln(mt=MU) = 1=�s(mc)� 25

6�
ln(mc=mb)� 23

6�
ln(mb=mt) : (8.2)

Identifying

1=�s(mc) � 27

6�
ln(mc=�QCD) ; (8.3)

we �nd that

�QCD = e�6�=27�U
�

MU

1 GeV

�21=27�mtmbmc

1 GeV3

�2=27
GeV : (8.4)

The scale parameter �QCD is the only dimensionful parameter in QCD; it determines the scale of
the con�nement energy that is the dominant contribution to the proton mass. We conclude that, in
a simple uni�ed theory,

Mproton / m
2=27
t : (8.5)

The dotted line in Figure 3 shows how the evolution of 1=�s changes if the top-quark mass is
reduced. We see from Equations (8.4) and (8.5) that a factor-of-ten decrease in the top-quark mass
would result in a 20% decrease in the proton mass. We can't fully understand the origin of one of
the most important parameters in the everyday world|the mass of the proton|without knowing the
properties of the top quark.
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